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Department of Chemistry, University of Toronto, Toronto, Canada M5S 1Al  

Received 21 December 1981 

Abstract. We consider the problem of bondsite percolation on a triangular lattice in 
which bonds are separated into two classes with different occupation probabilities. Pure 
site and pure bond percolation on the triangular and square lattices are special cases of 
this system. We use an approximate real space renormalisation group treatment to identify 
the critical surface and we present evidence for the universality of critical exponents for 
site, bond and mixed bondsite percolation, except at a single point in the space which 
corresponds to percolation in one dimension. 

1. Introduction 

The extension of the usual percolation models to allow both bonds and sites to be 
occupied at random and independently (bond-site percolation) seems to have been 
first discussed by Frisch and Hammersley (1963). Bond-site percolation has been 
considered (Hammersley and Welsh 1980) as a model of the spread of disease in a 
biological population (where the site and bond densities correspond respectively to 
the susceptibility and infectability of individuals in the population), and as a model 
of polymer gelation in the presence of solvent molecules which do not contribute to 
the polymerisation process (Stauffer 1981). Relatively little work has appeared in 
this area. Bond-site percolation on the square lattice has been studied both by series 
analysis methods (Agrawal et a1 1979) and by real space renormalisation group 
techniques (Nakanishi and Reynolds 1979). In addition, Napiorkowski and Hemmer 
(1980) have considered bond-site percolation on a square lattice with nearest-neigh- 
bour and next-nearest-neighbour bonds, in which the two classes of bonds can have 
different occupation probabilities. Hammersley and Welsh (1980) have discussed 
some inequalities between the percolation probability in a bond-site percolation 
process and the percolation probabilities for the corresponding pure bond and pure 
site processes. 

In this paper we consider bond-site percolation on a triangular lattice in which 
bonds are divided into two classes with different occupation probabilities. The 
triangular lattice can be deformed into a square lattice with an additional diagonal 
bond in each square (see figure 1). If we allow sites to be occupied independently 
with probability s, ‘horizontal’ and ‘vertical’ bonds to be occupied independently with 
probability b, and ‘diagonal’ bonds to be occupied with probability d then, by varying 
s, b and d, we can move in this three-parameter space from one well known percolation 
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Figure 1. The triangular lattice deformed to give a square lattice with additional diagonal 
bonds. 

system to another. Thus b = d = 1 corresponds to site percolation (with site density 
s) on the triangular lattice, b = 1 ,  d = 0 to site percolation on the square lattice, s = 1 ,  
d = 0 to bond percolation on the square lattice and s = 1 ,  b = d to bond percolation 
on the triangular lattice. In addition, setting b = 0 uncouples the diagonal bonds into 
a series of linear chains and leads to percolation on a line. The special case of b = 1 
has been studied using Monte Carlo methods by Hoshen et a1 (1979) and by series 
analysis methods in the following paper (Torrie et a1 1982). 

An investigation of this bond-site percolation process will give information on the 
universality of critical exponents for the various special cases discussed above and for 
the more general process. In this paper we construct a real space renormalisation 
group scheme and present evidence that the exponents are universal except at the 
special point corresponding to percolation in one dimension. 

2. Renormalisation group scheme 

We first construct a ‘cell’ which, by translation in two perpendicular directions, 
generates the lattice. We could choose any such ‘cell’, but the cell shown in figure 2 

Figure 2. Renormalisation scheme for a single cell. 

is small enough to be easily analysed and yet large enough to retain the essential 
features of the problem. This renormalises into a site, two ‘6’ bonds and one ‘d’  
bond. The site renormalisation (shown in figure 3) is straightforward and the renor- 
malised site density (s‘) is the probability that at least one path exists crossing the 
cell, i.e., 

The first two terms represent the probabilities of the five single bond paths and the 
remainder of the expression follows by application of the inclusion-exclusion principle. 
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a-* 
Figure 3. Site renormalisation scheme. 

When we consider bond renormalisation there is an additional complication since 
some paths must renormalise to ‘b’ bonds and the remainder to ‘d’ bonds. This 
division is somewhat arbitrary but we have chosen the following system. Any path 
from a source site (designated as a cross) in figure 4 to a site at the opposite side of 
the cell (open circles) renormalises into a ‘b’ bond terminating in a site, thus 

S’b’ = 2s2bd + 2s2b2 - s2b2d + s3bd2 +s3b2d -4s3b2d2 

+2s3b3-7s3b3d +5s3b3d2-2s3b4+4s3b4d 

-2s3b4d2 - s 4 b 2 d 2 -  3s4b3d +4s4b3d2-3s4b4 
+8s4b4d - 5 ~ ~ b ~ d ~ + 2 ~ ~ b ~ - 4 ~ ~ b ~ d  + 2 ~  4 5 2  b d . 

Figure 4. Renormalisation of vertical bonds. 

Similarly, any path crossing the cell in figure 5 from the source site (or cross) to the 
sink site (or open circle) renormalises to a ‘d’  bond terminating in a site. Hence 

s ’d’={2s2b2+sd  -2s2b2d - ~ ~ b ~ + ~ ~ b ~ d } ~ .  (2 .3)  
Equations (2.1)-(2.3) define the renormalisation group transformation in the 

(s, 6, d )  space and the fixed points of this transformation are (0, 0, 0), ( 1 ,  1 ,  l), ( 1 , 0 , 1 )  

Figure 5. Renormalisation of diagonal bonds. 

and (0.7482, 0.5709, 0.2384).  When we examine the flow patterns we find that the 
first two fixed points are trivial (attractive) fixed points. The third point turns out to 
be an isolated fixed point and corresponds to one-dimensional percolation, since 
setting b = 0 decouples the ‘d’  bonds into a set of independent linear chains. Percola- 
tion only occurs in this one-dimensional system for s = d = 1. The fourth fixed point 
(F) lies on the critical surface which divides the gel region from the sol region. Flows 
from points in the sol region are into (0, 0,O) and from points in the gel region are 
into ( 1 , 1 , 1 ) .  All points on the critical surface (except ( 1 , 0 , 1 ) )  are attracted to F, 
indicating that the critical behaviour will be universal, except at ( 1 ,  0, 1 ) .  



2270 A J Guttmann and S G Whittington 

a 

Figure 6.  The critical surface separating the sol region from the gel region in the (s, b, d )  
unit cube. 

The critical surface is shown in figure 6. Like the relevant fixed points, it is obtained 
numerically, by following flows from points on the surface of the unit (s, b, d )  cube. 
The points of intersection of the critical surface with appropriate edges of the cube 
give estimates of the critical percolation densities for the square bond, square site and 
triangular site problems. These are respectively 0.45, 0.52 and 0.47. These are 
somewhat lower than the exact values of 1 for the square bond (Sykes and Essam 
1964, Kesten 1980) and triangular site problems (Sykes and Essam 1964) and the 
series estimate of 0.593 (Sykes et a1 1976) for the square site problem. Similarly, the 
intersection of the critical surface with the line s = 1, b = d is an estimate of the critical 
density of the triangular bond problem. This value of 0.34 is lower than the exact 
value (Sykes and Essam 1964) of 2 sin(.rr/l8)=0.347. On the whole, the level of 
agreement with exact results is very satisfactory. 

After linearising the transformation about F, we find that the eigenvalues of the 
(linearised) transformation are A I  = 1.721, A 2  = 0.609 and h3 = 0.246. Since the scale 
factor for the transformation is 2, the pair connectedness length exponent (Y) is given 
by 

~=log2/10gAl=1.28 .  (2.4) 
This value should be compared with recent renormalisation group estimates for 
two-dimensional bond-sjte percolation of 1.47 (Nakanishi and Reynolds 1979) and 
1.22 (Napiorkowski and Hemmer 1980) and the conjecture of den Nijs (1979) of $. 
The relevant eigenvalues, in principle, give correction terms to the leading exponent 
Y, but given the approximate nature of the model we don’t feel that much weight 
should be attached to the numerical value of correction exponents. 

Turning now to the fixed point at (1,0,  l), corresponding to one-dimensional 
percolation, we find that the eigenvalues are 1, 2 and 3. The smallest relevant 
eigenvalue gives v = log 2/log 2 = 1 in agreement with exact results. The marginal 
eigenvalue is not attractive, as off the critical surface all flows go to (0, 0,O) or (1, 1, l), 
depending upon whether they start in the sol or gel region, while, on the critical 
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surface, all flows are attracted to the physical fixed point ( F ) .  Thus the point (1,0, 1) 
is an isolated, repulsive fixed point, in a distinct universality class. This, of course, is 
precisely what one would expect from physical considerations. 

3. Discussion 

We have presented a real space renormalisation group treatment of bond-site percola- 
tion on an anisotropic triangular lattice. The transformation has two non-trivial fixed 
points, one of which is an isolated fixed point corresponding to percolation in one 
dimension, and the other governs the critical behaviour of the remainder of the 
three-parameter space. This is strong evidence for universality and, in particular, 
suggests that bond and site percolation on the square and triangular lattices will have 
the same critical exponents, as will mixed bond-site percolation on these lattices. 

Our estimates of the critical densities for bond and site percolation on the square 
and triangular lattices, although all somewhat low, are in reasonable agreement with 
exact values or with values derived by series analysis. They could perhaps be improved 
by eliminating certain paths in our renormalisation scheme, but there seems no 
compelling physical argument to warrant such elimination. Our estimate of the pair 
connectedness exponent ( a / )  is reasonably close to the conjectured value of den Nijs. 
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